Siemens
ÑÐÅÄÑÒÂÀ ÏÐÎÌÛØËÅÍÍÎÉ ÀÂÒÎÌÀÒÈÇÀÖÈÈ
îôèöèàëüíûé ïàðòíåð Ñèìåíñ
Êàòàëîã ÑÀ01 2018
(4872) 700-366
skenergo@mail.ru
Ñêà÷àòü Assets 

Regulations, standards, and specifications

The motors comply with the appropriate standards and regulations, see table below.

As a result of the fact that in many countries the national regulations have been harmonized with the international IEC 60034-1 recommendation, there are no longer any differences with respect to coolant temperatures, temperature classes, and temperature rise limits.

General specifications for rotating electrical machines

IEC 60034‑1

Terminal designations and direction of rotation for electrical machines

IEC 60034‑8

Types of construction of rotating electrical machines

IEC 60034‑7

Cooling methods of rotating electrical machines

IEC 60034‑6

Degrees of protection of rotating electrical machines

IEC 60034‑5

Vibration severity of rotating electrical machines

IEC 60034‑14

Noise limit values for rotating electrical machines

IEC 60034‑9

Cylindrical shaft extensions for electrical machines

DIN 748 Part 3/IEC 60072



The motors listed below are UL-approved by Underwriters Laboratories Inc. and also comply with Canadian cUR standards:
SIMOTICS S‑1FK7/S‑1FT7/SIMOTICS T‑1FW3/T‑1FW6/SIMOTICS M‑1PH8 (without brake)/SIMOTICS L‑1FN3.

Degrees of protection for AC motors

A suitable degree of protection must be selected depending on the operating and environmental conditions to protect the machine against:

  • Ingress of water, dust, and solid foreign objects,
  • Contact with rotating parts inside a motor, and
  • Contact with live parts.

Degrees of protection of electric motors are specified by a code. This comprises 2 letters, 2 digits and, if required, an additional letter.

IP (International Protection)
Code letter designating the degree of protection against contact and the ingress of solid foreign objects and water

0 to 6
1st digit designating the degree of touch protection and protection against ingress of solid foreign objects

0 to 8
2nd digit designating the degree of protection against ingress of water (no oil protection)

W, S and M
Additional code letters for special degrees of protection

Most motors are supplied with the following degrees of protection:

Motor

Degree of protection

1st digit:
Touch protection

Protection against foreign objects

2nd digit:
Protection against water

Internally cooled

IP23

Protection against finger contact

Protection against medium-sized, solid foreign objects above 12 mm (0.47 in) ∅

Protection against spray water up to 60° from the vertical

Surface-cooled

IP54

Complete protection against accidental contact

Protection against harmful dust deposits

Splash water from any direction

IP55

Jet water from any direction

IP64

Complete protection against accidental contact

Protection against dust ingress

Splash water from any direction

IP651)

Jet water from any direction

IP671)

Motor under specified pressure and time conditions under water



1) DIN VDE 0530 Part 5 or EN 60034 Part 5 specifies that there are only 5 degrees of protection for the first digit code and 8 degrees of protection for the second digit code in relation to rotating electrical machinery. However, IP6 is included in DIN 40050, which generally applies to electrical equipment.

Recommended degrees of protection for AC motors

When cooling lubricants are used, protection against water alone is inadequate. The IP rating should only be considered as a guideline in this case. The motors may have to be protected by suitable covers. Attention must be paid to providing suitable sealing of the motor shaft for the selected degree of protection for the motor (for 1FT7: IP67 degree of protection).

The table can serve as a decision aid for selecting the proper degree of protection for motors. With mounting position IM V3/IM V19/IM V6/IM V35 with shaft extension facing upwards, a permanent covering of liquid on the flange must be avoided. With a mounting position with the shaft extension facing upwards, liquid remaining on the motor flange can be avoided by selecting a 1FT7 motor with degree of protection IP67 and a recessed flange.

Liquids

General workshop environment

Water; general cooling lubricant (95% water, 5% oil)

Effect

Dry

IP64

Liquid-enriched environment

IP64

Mist

IP65

Spray

IP65

Jet

IP67

Splash/brief immersion/
constant inundation

IP67



Radial eccentricity tolerance of shaft in relation to housing axis

referred to cylindrical shaft extensions

Shaft height

Tolerance N

Tolerance R

Tolerance SPECIAL

SH

mm (in)

mm (in)

mm (in)

28/36

0.035 (0.00138)

0.018 (0.00071)

48/63

0.04 (0.00157)

0.021 (0.00083)

80/100/132

0.05 (0.00197)

0.025 (0.00098)

0.01 (0.00039)

160/180/225

0.06 (0.00236)

0.03 (0.00118)

0.01/–/–
(0.00039)/–/–

280

0.07 (0.00276)

0.035 (0.00138)

355

0.08 (0.00315)

0.04 (0.00157)



Concentricity and axial eccentricity tolerance of the flange surface relative to the shaft axis

(referred to the centering diameter of the mounting flange)

Shaft height

Tolerance N

Tolerance R

Tolerance SPECIAL

SH

mm (in)

mm (in)

mm (in)

28/36/48

0.08 (0.00315)

0.04 (0.00157)

63/80/100

0.1 (0.00394)

0.05 (0.00197)

–/0.03/0.04

–/(0.00118/0.00157)

132/160/180/225

0.125 (0.00492)

0.063 (0.00248)

0.04/0.04/–

(0.00157/0.00157)/–

280/355

0.16 (0.00630)

0.08 (0.00315)



Vibration severity and vibration severity grade A in accordance with IEC 60034‑14

The vibration severity is the RMS value of the vibration velocity (frequency range from 10 to 1000 Hz). The vibration severity is measured using electrical measuring instruments in compliance with DIN 45666.

The values indicated refer only to the motor. These values can increase as a result of the overall system vibrational behavior due to installation.

Vibration severity limit values for shaft heights 20 to 132

The speeds of 1800 rpm and 3600 rpm and the associated limit values are defined in accordance with IEC 60034-14. The speeds of 4500 rpm and 6000 rpm and the specified values are defined by the motor manufacturer.

The motors maintain vibration severity grade A up to rated speed.

Vibration severity limit values for shaft heights 160 to 280

Balancing according to DIN ISO 8821

In addition to the balance quality of the motor, the vibration qualit​​y of motors with mounted belt pulleys and coupling is essentially determined by the balance quality of the mounted component.

If the motor and mounted component are separately balanced before they are assembled, then the process used to balance the belt pulley or coupling must be adapted to the motor balancing type. The following different balancing methods are used on motors of types SIMOTICS M‑1PH8:

  • Half-key balancing
  • Full-key balancing
  • Plain shaft extension

The letter H (half key) or F (full key) is printed on the shaft extension face to identify a half‑key balanced or a full‑key balanced SIMOTICS M‑1PH8 motor.

SIMOTICS S-1FT7/S-1FK7 motors with feather key are always half-key balanced.

In general, motors with a plain shaft are recommended for systems with the most stringent vibrational quality requirements. For full‑key balanced motors, we recommend belt pulleys with two opposite keyways, but only one feather key in the shaft extension.

Vibration stress, immitted vibration values

The following maximum permissible vibration stress limits at full reliability performance apply only to SIMOTICS S-1FT7/1FK7 permanent-magnet servomotors.

Vibration stress according to DIN ISO 10816:

Vibration frequency

Vibration values for
1FT7/1FK7 (naturally cooled and water-cooled)

10 ... 2000 Hz

Vibration velocity Vrms

≤ 4.5 mm/s (0.18 in/s)

Vibration acceleration a axial

≤ 25 m/s2 (82.0 ft/s2)

Vibration acceleration a radial

≤ 50 m/s2 (164.0 ft/s2)



For motors with forced ventilation, the limit values for axial and radial acceleration are limited to 10 m/s2 (32.8 ft/s2)

For all main motors of type SIMOTICS M-1PH8, the following limits are valid for (immitted) vibration values introduced into the motor from outside:

Vibration frequency

Vibration values for
1PH808/1PH810/1PH813/1PH816

< 6.3 Hz

Vibration displacement s

≤ 0.16 mm (0.006 in)

6.3 ... 250 Hz

Vibration velocity Vrms

≤ 4.5 mm/s (0.18 in/s)

> 250 Hz

Vibration acceleration a

≤ 10 m/s2 (32.8 ft/s2)



Vibration frequency

Vibration values for
1PH818/1PH822/1PH828

< 6.3 Hz

Vibration displacement s

≤ 0.26 mm (0.010 in)

6.3 ... 63 Hz

Vibration velocity Vrms

≤ 7.1 mm/s (0.28 in/s)

> 63 Hz

Vibration acceleration a

≤ 4.0 m/s2 (13.1 ft/s2)



For all torque motors of type SIMOTICS T-1FW3, the following limits are valid for (immitted) vibration values introduced into the motor from outside:

Vibration frequency

Vibration values for
1FW3

< 6.3 Hz

Vibration displacement s

≤ 0.26 mm (0.01 in)

6.3 ... 63 Hz

Vibration velocity Vam

≤ 7.1 mm/s (0.28 in/s)

> 63 Hz

Vibration acceleration a

≤ 4.0 m/s2 (13.1 ft/s2)



Coolant temperature (ambient temperature) and installation altitude for motors with natural cooling and forced ventilation

Operation (unrestricted): -15 to +40 °C (5 to 104 °F)

The rated power (rated torque) is applicable to continuous duty (S1) in accordance with EN 60034-1 at rated frequency, a coolant temperature of 40 °C (104 °F) and an installation altitude of up to 1000 m (3281 ft) above sea level.

Apart from the SIMOTICS M-1PH8 motors, all motors are designed for temperature class 155 (F) and utilized in accordance with temperature class 155 (F). The SIMOTICS M-1PH8 motors are designed for temperature class 180 (H). For all other conditions, the factors given in the table below must be applied to determine the permissible output (torque).

The coolant temperature and installation altitude are rounded to 5 °C (41 °F) and 500 m (1640 ft) respectively.

Installation altitude above sea level

Coolant temperature
(ambient temperature)

m (ft)

< 30 °C
(86 °F)

30 ... 40 °C
(86 ... 104 °F)

45 °C
(113 °F)

50 °C
(122 °F)

1000 (3281)

1.07

1.00

0.96

0.92

1500 (4922)

1.04

0.97

0.93

0.89

2000 (6562)

1.00

0.94

0.90

0.86

2500 (8203)

0.96

0.90

0.86

0.83

3000 (9843)

0.92

0.86

0.82

0.79

3500 (11484)

0.88

0.82

0.79

0.75

4000 (13124)

0.82

0.77

0.74

0.71



Duty types S1 and S6 in accordance with EN 60034‑1

 

Rated torque

The torque supplied on the shaft is indicated in Nm (lbf-ft) in the selection and ordering data.

Mrated = 9.55 Ã— Prated Ã— 1000/nrated

Prated  Rated power in kW

nrated  Rated speed in rpm

Mrated Rated torque in Nm

 

Mrated = Prated Ã— (5250/nrated)

Prated  Rated power in hp

nrated  Rated speed in rpm

Mrated Rated torque in lbf-ft

DURIGNIT IR 2000 insulation

The DURIGNIT IR 2000 insulation system consists of high-quality enamel wires and insulating sheeting in conjunction with solventfree resin impregnation.

The insulating material system ensures that these motors will have a high mechanical and electrical stability, high service value, and a long service life.

The insulation system protects the winding to a large degree against aggressive gases, vapors, dust, oil, and increased air humidity. It can withstand the usual vibration stressing.

Characteristic curves

Torque characteristic of a synchronous motor operating on a converter with field weakening (example)

nrated Rated speed

nmaxInv Maximum permissible electric speed limit

nmaxmech Maximum permissible mechanical speed limit

M0 Static torque

Mrated Rated torque at rated speed

Mmax Inv Achievable maximum torque with recommended Motor Module

Mmax Maximum permissible torque

Motor protection

PT1000 temperature sensor characteristics does not focus on temperature range of importance (i.e. 0 to 300 degrees C)

The motor temperature for converter motor operation is measured using the Pt1000 temperature sensor (see characteristic) and the KTY84-130 in isolated cases.

This temperature sensor is a semi-conductor that changes its resistance depending on temperature in accordance with a defined curve.

Siemens converters calculate the motor temperature from the resistance of the temperature sensor.

Their parameters can be set for specific alarm and shutdown temperatures.

The temperature sensor is embedded in the winding overhang of the motor in the same way as a PTC thermistor.

Motors without an integrated DRIVE-CLiQ are now fitted with the new Pt1000 temperature sensor. Exception 1FW6: The conversion will not take place until mid-2017.

Motors with an integrated DRIVE-CLiQ interface (1FT7/1FK7/ 1PH8/1FW3) will generally be converted to Pt1000 from the start of 2017.

Both sensors are evaluated in the SINAMICS S120 drive system as a standard function.

If the motors are operated on converters that do not feature a temperature sensor evaluation function, the temperature can be evaluated with the external 3RS1040 temperature monitoring relay.

For further information, please refer to Catalog IC 10 or visit the Siemens Industry Mall.

http://www.siemens.com/industrymall

Paint finish

SIMOTICS S-1FT7/S-1FK7 motors (up to SH 100) without a paint finish have an impregnated resin coating. Motors with primer have corrosion protection.

All motors can be painted over with commercially available paints. Up to 2 additional paint coats are permissible.

Version

Suitability of paint finish for climate group
in accordance with IEC 60721, Part 2 – 1

Paint finish

Moderate (expanded) for indoor and outdoor installation with roof protection

Briefly

up to 150 °C (302 °F)

Continuously

up to 120 °C (248 °F)

Special paint finish

Worldwide (expanded) for outdoor installation

Briefly

up to 150 °C (302 °F)

Continuously

up to 120 °C (248 °F)

Also

for corrosive atmospheres up to 1 % acid and alkali concentration or permanent dampness in sheltered rooms



Built-in encoder systems without DRIVE‑CLiQ interface

For motors without an integrated DRIVE-CLiQ interface, the analog encoder signal in the drive system is converted into a digital signal. For these motors as well as external encoders, the encoder signals must be connected to SINAMICS S120 via Sensor Modules.

Built-in encoder systems with DRIVE‑CLiQ interface

For motors with an integrated DRIVE-CLiQ interface, the analog encoder signal is internally converted to a digital signal. No further conversion of the encoder signal in the drive system is required. The motor-internal encoders are the same encoders that are used for motors without a DRIVE-CLiQ interface. Motors with a DRIVE-CLiQ interface simplify commissioning and diagnostics, for example, as the encoder system is identified automatically.

The different encoder types, incremental, absolute, or resolver, are all connected with one type of MOTION-CONNECT DRIVE-CLiQ cable.

Short designations for the encoder systems

The first letters of the short designation define the encoder type. This is followed by the resolution in signals per revolution if S/R is specified (for encoders without DRIVE-CLiQ interface) or in bits if DQ or DQI is specified (for encoders with DRIVE-CLiQ interface).

Type

Resolution/interface

AM
AS
IC
IN
HTL

xxxxS/R

Encoder without DRIVE‑CLiQ interface
Resolution = xxxx signals per revolution

AM
AS
IC
IN
R

xxDQ
or
xxDQI

Encoder with DRIVE‑CLiQ interface
Resolution = xx bit (2xx)

AM

Multi-turn absolute encoder

AS

Single-turn absolute encoder

IC

Incremental encoder sin/cos with commutation position C and D tracks

IN

Incremental encoder sin/cos without commutation position

HTL

Incremental encoder with HTL signal

R

Resolver



Overview of the motor encoder systems

Encoder without DRIVE‑CLiQ interface

Encoder with DRIVE‑CLiQ interface

Absolute position within one revolution (single‑turn)

Absolute position over 4096 revolutions (multi‑turn)

For use in safety applications1)

 

Identification letter in the motor article number

 

Identification letter in the motor article number

   

Encoder

1FT7

1FK7

1FW3

1PH8

Encoder

1FT7

1FK7

1FW3

1PH8

   

AM24DQI

C/L

C

C

Yes

Yes

Yes

AM20DQI

R

Yes

Yes

Yes

AS24DQI

B/K

B

B

Yes

No

Yes

AS20DQI

Q

Yes

No

Yes

AM2048S/R

M

E

E

E

AM22DQ

F

F

F

F

Yes

Yes

Yes

AM512S/R

H

AM20DQ

L

Yes

Yes

Yes

AM32S/R

G

AM16DQ

K

Yes

Yes

No

AM16S/R

J

AM15DQ

V

Yes

Yes

No

AS2048S/R

AS22DQ

Yes

No

No

IC2048S/R

N

A

A

M

IC22DQ

D

D

D

D

No

No

Yes

IN2048S/R

IN22DQ

No

No

Yes

HTL1024S/R

H

No

No

No

HTL2048S/R

J

No

No

No

Resolver
p=1

T

R14DQ

P

Yes

No

No

Resolver
p=3

S

S

R15DQ

U

U

No

No

No

Resolver
p=4

S

S

R15DQ

U

U

No

No

No



1) Not for SIMOTICS T-1FW3.

Not every encoder is available for every motor shaft height.

– Not possible

Multi-turn absolute encoder

This encoder outputs an absolute angular position between 0° and 360° in the specified resolution. An internal measuring gearbox enables it to differentiate 4096 revolutions.

So with a ball screw, for example, the absolute position of the slide can be determined over a long distance.

Multi-turn absolute encoder

Single-turn absolute encoder

This encoder outputs an absolute angular position between 0° and 360° in the specified resolution. In contrast to the multi-turn absolute encoder, it has no measuring gearbox and can therefore only supply the position value within one revolution. It does not have a traversing range.

Absolute encoders without DRIVE‑CLiQ interface

AM2048S/R
encoder

Absolute encoder 2048 S/R, 4096 revolutions, multi-turn, with EnDat interface

AM512S/R
encoder

Absolute encoder 2048 S/R, 4096 revolutions, multi-turn, with EnDat interface

AM32S/R
encoder

Absolute encoder 32 S/R, 4096 revolutions, multi-turn, with EnDat interface

AM16S/R
encoder

Absolute encoder 16 S/R, 4096 revolutions, multi-turn, with EnDat interface

AS2048S/R
encoder

Absolute encoder 2048 S/R, single-turn

Absolute encoders with DRIVE‑CLiQ interface

AM24DQI
encoder

Absolute encoder, 24 bit (resolution 16777216, internal encoder 2048 S/R) + 12 bit multi-turn (traversing range 4096 revolutions)

AM20DQI
encoder

Absolute encoder, 20 bit (resolution 1048576, internal 512 S/R) + 12 bit multi-turn (traversing range 4096 revolutions)

AM22DQ
encoder

Absolute encoder, 22 bit (resolution 4194304, internal encoder 2048 S/R) + 12 bit multi-turn (traversing range 4096 revolutions)

AM20DQ
encoder

Absolute encoder, 20 bit (resolution 1048576, internal 512 S/R) + 12 bit multi-turn (traversing range 4096 revolutions)

AM16DQ
encoder

Absolute encoder, 20 bit (resolution 1048576, internal 512 S/R) + 12 bit multi-turn (traversing range 4096 revolutions)

AM15DQ
encoder

Absolute encoder 15 bit (resolution 32768, internal 16 S/R)+ 12 bit multi-turn (traversing range 4096 revolutions)

AS24DQI
encoder1)

Absolute encoder, single-turn, 24 bit (resolution 16777216)

AS20DQI
encoder1)

Absolute encoder, single-turn, 20 bit (resolution 1048576)



1) Not for absolute encoder, single-turn AS

Technical specifications

 

Absolute encoders without DRIVE‑CLiQ interface

Supply voltage

5 V

Absolute position interface via EnDat 2.1

 
  • Traversing range (multi-turn)1)

4096 revolutions

Incremental signals
(sinusoidal, 1 Vpp)

 
  • Signals per revolution

2048/512/32/16

Absolute encoders with DRIVE‑CLiQ interface

Supply voltage

24 V

Absolute position via DRIVE-CLiQ

 
  • Resolution within one revolution

224/222/220/216/215 bit

  • Traversing range (multi-turn)1)

4096 revolutions



1) The single-turn absolute encoder is used for the previous incremental encoders.

Incremental encoder

This encoder senses relative movements and does not supply absolute position information. In combination with evaluation logic, a zero point can be determined using the integrated reference mark, which can be used to calculate the absolute position.

Incremental encoder IC/IN (sin/cos)

The encoder outputs sine and cosine signals. These can be interpolated using evaluation logic (usually 2048 points) and the direction of rotation can be determined.

In the version with DRIVE-CLiQ interface, this evaluation logic is already integrated in the encoder.

Commutation position

The position of the rotor is required for commutation of a synchronous motor. Encoders with commutation position (also termed C and D tracks) detect the angular position of the rotor.

Incremental encoder IC/CN (sin/cos), commutation position only for IC

Incremental encoder HTL

Incremental encoder HTL

Incremental encoders without DRIVE-CLiQ interface

IC2048S/R
encoder

Incremental encoder sin/cos 1 Vpp 2048 S/R
with C and D tracks

IN2048S/R
encoder

Incremental encoder sin/cos 1 Vpp 2048 S/R
without C and D tracks

HTL2048S/R
encoder

Incremental encoder HTL 2048 S/R

HTL1024S/R
encoder

Incremental encoder HTL 1024 S/R

Incremental encoders with DRIVE-CLiQ interface1)

IC22DQ
encoder

Incremental encoder 22 bit
(resolution 4194304, internal 2048 S/R)
+ commutation position 11 bit

IN22DQ
encoder

Incremental encoder 22 bit
(resolution 4194304, internal 2048 S/R)
without commutation position



1) Instead of the IC22DQ incremental encoder, the AS24DQI single-turn absolute encoder is used for SIMOTICS S-1FK7/1FT7.

Technical specifications

 

Incremental encoders IC/IN (sin/cos)
without DRIVE‑CLiQ interface

Supply voltage

5 V

Incremental signals per revolution

 
  • Resolution (sin/cos)

2048

  • Commutation position (only for IC)

1 sin/cos

  • Reference signal

1

Incremental encoders IC/IN (sin/cos)
with DRIVE‑CLiQ interface

Supply voltage

24 V

Incremental signals per revolution

 
  • Resolution

222 bit

  • Commutation position in bits (only for IC)

11

  • Reference signal

1

Incremental encoders HTL
without DRIVE‑CLiQ interface

Supply voltage

10 ... 30 V

Incremental signals per revolution

 
  • Resolution (HTL)

2048/1024

  • Reference signal

1



Resolver

The number of sine and cosine periods per revolution corresponds to the number of pole pairs of the resolver. In the case of a 2-pole resolver, the evaluation electronics may output an additional zero pulse per encoder revolution. This zero pulse ensures a unique assignment of the position information in relation to an encoder revolution. A 2-pole resolver can therefore be used as a single-turn encoder.

2-pole resolvers can be used for motors with any number of poles. With multi-pole resolvers, the pole pair numbers of the motor and the resolver are always identical, so that the resolution is correspondingly higher than with 2-pole resolvers.

 

Resolvers without DRIVE‑CLiQ interface1)

Resolver p = 1

2-pole resolver

Resolver p = 3

6-pole resolver

Resolver p = 4

8-pole resolver

Resolvers with DRIVE-CLiQ interface

R15DQ

Resolver 15 bit
(resolution 32768, internal, multi-pole)

R14DQ

Resolver 14 bit
(resolution 16384, internal, 2-pole)



1) Output signals:

    2-pole resolver: 1 sin/cos signal per revolution

    6-pole resolver: 3 sin/cos signals per revolution

    8-pole resolver: 4 sin/cos signals per revolution

Technical specifications

 

Resolvers without DRIVE‑CLiQ interface

Excitation voltage, rms

2 ... 8 V

Excitation frequency

5 ... 10 kHz

Output signals

Usine track = r Ã— Uexcitation Ã— sin Î±

Ucosine track = r Ã— Uexcitation Ã— cos Î±

α = arctan (Usine track/Ucosine track)

Transmission ratio

r = 0.5 ± 5 %

Resolvers with DRIVE‑CLiQ interface

Supply voltage

24 V

  • Resolution

215/214 bit



















skener.ru

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Àðìàòóðà DENDOR

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Äàò÷èêè è èçìåðèòåëè

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Ðåãóëÿòîðû è ðåãèñòðàòîðû

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Ïíåâìàòè÷åñêîå îáîðóäîâàíèå

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Êðàíû è Êëàïàíû

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Èçìåðèòåëüíûå ïðèáîðû

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Ñèñòåìû áåñïðîâîäíîãî óïðàâëåíèÿ «óìíûé äîì»

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Áåñêîíòàêòíûå âûêëþ÷àòåëè Êîíå÷íûå âûêëþ÷àòåëè Îïòè÷åñêèå äàò÷èêè Ýíêîäåðû

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
SKW-FS - Óñòàíîâêà óìÿã÷åíèÿ

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
SKW-FK - Óñòàíîâêà îáåçæåëåçèâàíèÿ

  © ÎÎÎ "ÑÊ ÝÍÅÐÃÎ" 2007-2022
  (4872) 700-366  skenergo@mail.ru
ßíäåêñ.Ìåòðèêà