Siemens
СРЕДСТВА ПРОМЫШЛЕННОЙ АВТОМАТИЗАЦИИ
официальный партнер Сименс
Каталог СА01 2016
архивный
(4872) 700-366
skenergo@mail.ru

In-situ O2 and CO gas analyzer
Operating principle

SITRANS SL is a gas analyzer employing single-line molecular absorption spectroscopy. A diode laser emits a beam of infrared light which passes through the process gas and is received by a detector unit. The wavelength of the laser diode output is tuned to a gas-specific absorption line. The laser continuously scans this single absorption line with a very high spectral resolution. The degree of absorption and the line shape are used for the evaluation.

Basic design of the SITRANS SL

The field design of the SITRANS SL in-situ gas analyzer consists of a transmitter unit and a detector unit. The light which is not absorbed by the sample is detected in the receiver. The concentration of the gas component is determined from the absorption.

The SITRANS SL analyzer measures a single gas component by means of the absorption capacity of a single fully resolved molecular absorption line.

Absorption spectrum of measured signal and reference signal with SITRANS SL

SITRANS SL is designed for measuring oxygen (O2) and carbon monoxide (CO) at high sensitivity.

Typical application specifications:

Oxygen concentration

0 ... 100 vol %

Process pressure/temperature conditions (with O2 application)

700 ... 5 000 hPa (absolute)/0 ... 200 °C

900 ... 1 100 hPa (absolute)/0 ... 600 °C

Carbon monoxide concentration

Smallest measuring range: 0 … 100 ppm @ 1 m

Largest measuring range: 0 … 6 000 ppm @ 30 cm

Process gas pressure/temperature conditions with CO application

700 … 2 000 hPa (absolute) / -20 … 300 °C

800 … 1 200 hPa (absolute) / 300 … 700 °C



The measuring performance of the SITRANS SL depends, among others, on the actual, individual process conditions with regard to concentration ranges, pressure and temperature.

An internal reference cell is used to constantly check the stability of the spectrometer.

The self-calibration of the analyzer is therefore valid for one year without the need for external recalibration using calibration gases.

Configuration

A feature of the in-situ analytical procedure is that the physical measurement takes place directly in the stream of process gas and directly in the actual process gas line. All process parameters such as gas matrix, pressure, temperature, moisture, dust load, flow velocity and mounting orientation can influence the measuring properties of the SITRANS SL and must therefore be investigated for each new application.

The standard applications listed in the ordering data for the SITRANS SL are distinguished in that the typical process conditions are adequately well-known and documented. If you cannot find your application among the standard applications, please contact Siemens. We will be pleased to check your possible individual application of the SITRANS SL. You can find an application questionnaire on the SITRANS SL product site on the Internet: http://www.siemens.de/insitufragebogen

Typical cross-duct arrangement of the SITRANS SL

The SITRANS SL can be optionally purged on the process side using appropriate purging gases to prevent contamination of the sensor optics on the process side. Purging tubes on the sensor heads, which slightly extend into the process gas stream, define the effective measuring path length.

Influences on the measurement

Dust load

As long as the laser beam is able to generate a suitable detector signal, the dust load in the process gas does not influence the analytical result. By applying a dynamic background correction, measurements can be carried out without any negative impact. Under optimal conditions, the SITRANS SL can cope with dust loads up to 20 g/Nm? and up to a measured path length of 8 m. The influence of a high dust load is extremely complex, and depends on the optical path length and particle size. The optical attenuation increases exponentially at longer path lengths. Smaller particles also have a very large influence on the optical attenuation. With high dust load, long path length and small particle size, the technical support at Siemens should be consulted.

Temperature

The influence of temperature on the absorption line is compensated by a correction file. A temperature signal can be fed into the instrument from an external temperature sensor. The signal is then used for mathematical correction of the influence of the temperature on the concentration strength. If the process gas temperature remains constant, a static correction can be carried out as an alternative. Without temperature compensation, the relative error caused by changes in the gas temperature has an extensive effect on the measurement (e.g. up to 0.24 %/K with the O2 application). An external temperature signal is therefore recommended in most cases.

Pressure

In addition to the temperature signal, an external pressure signal can be fed to the instrument to provide complete mathematical compensation for the pressure influence including the density effect. Without compensation, the relative error caused by changes in the process gas pressure is approx. 0.1 %/hPa. An external pressure signal is therefore recommended in most cases.

Effective optical path length

As a result of Beer-Lambert’s law, the absorption of laser light depends on the optical path length within the sample gas. Therefore the precision of the effective optical path length measurement can have an effect on the precision of the total measurement.

Since the sensor optics on the process side usually has to be purged to keep it clean for a longer period, the extent of the mixed zone between the purging medium and the process gas as well as the latter's concentration distribution must be considered. In a typical in-situ installation with an optical path length of several meters, the influence of the purging gas on the effective path length can be ignored.

The maximum possible path length and dust load mutually affect each other: the higher the dust load in the process, the shorter the max. possible path length.

Design of the non-Ex version of the SITRANS SL system

Design of the ATEX version of the SITRANS SL system

Design of the FM version of the SITRANS SL system

The transmitter and detector units are mounted on process flanges provided by the customer. Correct alignment of these flanges must be guaranteed, e.g. by using the optional sensor alignment kit.

Adjustment of the pair of sensors

The flange connection plates (process interface) of the SITRANS SL to the process flanges on the customer side must be correctly aligned so that the laser beam generated by the transmitter hits the photodetector in the detector unit This is guaranteed in that the transmitter and detector units have a curved surface integrated in the connection plates. The adjustment is carried out by shifting the flanges on these surfaces, through which the symmetry axis is aligned. The axis can be offset by ± 1 degree, which means that the process flanges must be welded onto the process wall with at least this accuracy - see following figure.

Installation/adjustment requirements for the pair of cross-duct sensors

Purging

The easiest way to avoid condensation and dust deposits on the sensor windows or excessively high thermal load of the windows and the sealing material as well as the sensor electronics is to purge them (with O2 application: nitrogen). Purging must be selected depending on the application. The transmitted-light sensors can therefore be configured for the respective situation. The application reference table provides recommendations for suitable purging for the standard applications.

If oxygen is to be measured with the SITRANS SL - which is also present in measurable quantities in the ambient air - oxygen-free purging gases must be used, such as nitrogen. It is equally necessary to purge the inside of the sensor heads, since the ambient air must also be displaced here out of the laser beam path. A differentiation is therefore made between purging on the process side and purging on the sensor side.

Arrangement for purging on the sensor side of the SITRANS SL

Purging on process side

For purging on the process side, the flow of purging gas can be adjusted between 0 and approx. 50 l/min at each sensor head using a needle valve (included in delivery).

Purging on sensor side

This can be combined with the purging on the process side, if required. Purging with nitrogen on the sensor side is almost always necessary for O2 applications to avoid an offset caused by the oxygen of the air present in the unit. The cells in the sensor head are then continuously purged with nitrogen. Particularly when (re)starting the SITRANS SL O2, a sufficiently high flow of purging gas of approx. 3 to 5 l/min must be provided for several minutes to ensure that all residues of oxygen are removed. The flow of sensor purging gas can subsequently be set to a lower value using the needle valve (included in delivery).

Note:
With purging on the process side, it may be necessary to use non-return valves to ensure no process gas can enter the purging gas line in the event of failure of the purging gas supply. This applies especially in the case of cascaded process and sensor purging where there is otherwise the danger that, for example, corrosive process gases could enter the sensor enclosure.

Purging tubes

The purging media used on the process side flow through purging tubes into the process gas stream. The tubes extend into the process area by a few centimeters, usually perpendicular to the process gas stream. This means that an exactly defined optical path length is defined through the sample gas. The effective measuring path in the process gas is therefore defined as the distance between the ends of the two purging tubes. The standard length of the purging tubes is 340 mm. To achieve sufficient calibration of the transmitter and receiver, the process wall should be max. 150 mm thick.

Measurement of the optical path length between the ends of the purging gas tubes

Maintenance and fault messages

The SITRANS SL carries out continuous self-monitoring, and outputs alarms and warnings to indicate maintenance requirements or a system fault. The information is output as plain text on the LUI display, where symbols identify the category and the severity of the fault.

Alarm categories:

  • Maintenance (system must be cleaned or repaired)
  • Process value (problem with external sensor, or process conditions outside the permissible range for SITRANS SL)
  • Configuration (SITRANS SL is not correctly configured)

Severity:

  • Fault (measurements could not be carried out)
  • Warning (measurements may be inaccurate, or the system will soon shut down measuring mode if an intervention is not made)
  • Advanced warning/information (measurements are carried out)

The two binary (relay) outputs can be configured freely for the alarm output.

The response of the analog outputs in the event of an alarm is configurable; possible actions are:

  • Off (current measured value is displayed)
  • Last measured value (freezing of last value displayed)
  • Standard level (setting to predefined value)
  • 3 mA (NAMUR NE43 fault status)

In addition, the transmission is available as an output variable.

Note

Specific requirements for the measuring point can make the utilization of special sensor equipment necessary. The possibilities for adapting the sensors are:

  • Special materials for purging tubes (on request)
  • Various types/sizes of sensor flanges
  • Explosion-protected sensor configurations
Essential characteristics
  • Long-term stabilization by using an internal reference cell; for calibration interval of at least one year
  • Dynamic background correction for varying dust loads
  • Isolated signal outputs of 4 to 20 mA
  • User-friendly, menu-driven operation
  • Selectable time constants (response time)
  • Password-protected user interface
  • I/O operation in accordance with NAMUR recommendations
  • Monitoring of overall optical transmission
  • Sensor enclosure resistant to wear and corrosion
  • Simple local operation using remote-control unit with numeric keypad and menu prompting
Standard applications

The following table lists the measuring conditions for standard applications. The listed values for the measuring range and detection limit are only approximate values. The exact values at the respective measuring point depend on the totality of all influencing variables and can be determined by Siemens for the specific case. Note that the values for the detection limit and the maximum measuring range are based on a path length of 1 m. Longer path lengths will improve the detection limit, but not linearly. This is due to limiting effects such as dust load. The maximum applicable measuring ranges can only be used if permitted by the process conditions such as dust load.

Standard application
Effective optical path length: 0.3 … 8 m
Dust load2): < 50 g/Nm3

Process gas temperature
Tmin … Tmax

Process gas pressure
pmin …pmax

Min. measuring range
(with 1 m eff. opt. path length)

Max. measuring range
(also dependent on eff. opt. path length: see following column)

Max. measuring range x path length

DL x path length
(under standard conditions1)
without cross-interference of other gases)

Repeatability3)

Purging gas medium

Sample gas component

Gas code

Appl. code

        

O2

A

B

0 … 600 °C

900 … 1 100 hPa

0 … 1 vol%

0 … 100 vol%

75 vol%*m

200 ppmv*m

2%

N2

O2

A

C

0 … 200 °C

700 … 5 000 hPa

0 … 1 vol%

0 … 100 vol%

75 vol%*m

200 ppmv*m

2%

N2

CO

J

C

-20 … 700 °C

700 ... 2 000 hPa, max. 300 °C

800 ... 1 200 hPa, above 300 °C

0 … 100 ppmv

0 … 6 000 ppmv

2 000 ppmv*m

0.6 ppmv*m4)

2%

Air, N2



Reference table: Standard applications. The specified pressures are absolute.

DL = detection limit

1) The specification applies at 20 °C and 1013 hPa in a nitrogen atmosphere.  In rare cases, a deviating process gas matrix or process conditions can have a negative effect on performance. Contact Siemens to determine the exact performance under your process conditions.

2) With 0.3 m effective optical path length
Average diameter of the dust particles: 15 µm
Specific weight of the dust particles: 650 kg/m3
The influence of dust load is extremely complex and depends on the path length and particle size. The optical attenuation increases exponentially at longer path lengths. Smaller particles also have a very large influence on the optical attenuation. With high dust load, long path length and small particle size, the technical support at Siemens should be consulted.

3) Based on measuring range. With stable or externally measured and software-compensated process gas temperature and pressure conditions.

4) The measurement of CO can be significantly affected by hydrocarbons, such as CH4. Ensure there is no CH4 the process or contact Siemens and describe the process conditions using the provided application questionnaire (see below).

Special applications
  
 

In addition to the standard applications, special applications are available upon request. If the process conditions deviate from the specifications of the standard applications, special applications are also possible on request. Please complete the application questionnaire which can be found on the Internet at http://www.siemens.de/insitufragebogen.



















skener.ru

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Арматура DENDOR

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Датчики и измерители

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Регуляторы и регистраторы

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Пневматическое оборудование

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Краны и Клапаны

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Измерительные приборы

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Системы беспроводного управления «умный дом»

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
Бесконтактные выключатели Конечные выключатели Оптические датчики Энкодеры

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
SKW-FS - Установка умягчения

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 23

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30

Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30


Deprecated: Function eregi() is deprecated in /home/h101150-2/siemens71.ru/docs/kip/kip.php on line 30
SKW-FK - Установка обезжелезивания
Каталог оборудования 2016
Каталог продуктов Siemens Industry Приводная техника Техника автоматизации Системы автоматизации Системы визуализации SIMATIC HMI Системы идентификации Промышленные коммуникации SIMATIC NET Промышленные аппараты управления SIRIUS Промышленные информационные технологии Управление на базе РС Системы управления процессом Датчики Контрольно-измерительные приборы Анализаторы процесса Непрерывные анализаторы газов Непрерывные анализаторы газов, эктрактивные Непрерывный газовый анализ, in-situ Introduction to TDLS: LDS 6 and SITRANS SL LDS 6 SITRANS SL In-situ O2 and CO gas analyzer Documentation Промышленные газовые хроматографы Analytical Application Sets General information Технологии взвешивания Блоки питания Продукты для специальных требований Автоматизация и безопасность зданий Низковольтная коммутационная техника Технология безопасности Системные решения и продукты для отраслей Сервис ... и все, что Вам еще необходимо




  © ООО "СК ЭНЕРГО" 2007-2022
  (4872) 700-366  skenergo@mail.ru
Яндекс.Метрика